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0 ABSTRACT 
     
The overall aim of our research is to enable overnight high 
fidelity LES for realistic industry problems on affordable 
computing resource. We have adopted a “3E” approach: high 
spatial discretization Efficiency on general unstructured meshes, 
high Efficiency accurate time integration and high computing 
Efficiency on modern low cost HPC hardware. Our approach is 
centered on high order Flux Reconstruction with local time 
stepping – the STEFR algorithm [1]. In this paper, an offload-
mode version of this code is described targeted at a 
heterogeneous many-core computing system based on low cost 
commodity hardware - Intel PHI cards. Three key techniques are 
introduced to achieve high FLOP rates - and optimal usage of 
non-equilibrium memory of both CPU and the many core co-
processor - with three levels of parallelization, multi-level non-
equilibrium mesh partition and an asynchronous computing 
structure. A series of high order LES runs for a high lift low 
pressure turbine blade and a transonic turbine blade, with 
different order of accuracy, both fully wall-resolved and wall-
modelled, were performed, analyzed and presented. This work 
demonstrates that the high order STEFR method has the potential 
to support over-night LES for realistic industrial problems on 
affordable computing resource. 

 
1 INTRODUCTION 

 
One of the most important requirements from industry for 

the next generation of CFD software is the ability to provide 
affordable high fidelity results and analysis for large scale, real 
geometry problems. For a non-linear system such as the Navier-
Stokes equations, any under-resolved high frequency parts of the 
flow commonly lead to aliasing errors in the lower frequency 
parts which are of more interest in terms of industrial 
performance assessment. The more complex the flowfield, the 

more difficult it is for proper modelling of the high frequency 
part of the flow, and the easier it is to cause both inaccuracy and 
even instability in simulations. High fidelity simulations which 
attempt to resolve the higher frequency part (ie. the smaller 
turbulent scales) of the flowfield, are increasingly Large Eddy 
Simulations (LES) or even Direct Numerical Simulation (DNS). 
Both provide more general ability to handle turbulence without 
modelling and, for both, higher order methods are more efficient 
at correctly representing the wider energy spectrum resolved.  

 
As part of our research we introduced the STEFR method 

[1] which supports high order accuracy with both space and time 
discretization on arbitrary, general unstructured meshes. In 
particular, time-accurate local time-stepping was enabled by 
using a very efficient predictor-corrector type time integration 
method. The approach was demonstrated [2] to be 10~100 times 
faster for realistic simulations as compared to conventional 
uniform time-stepping methods – and the wider the range of 
scales to the geometry, the more complex the physical problem, 
the higher this “speed up ratio” becomes.  

 
Nevertheless, LES is still too time-consuming and still relies 

on expensive HPC devices and, even on very large modern 
clusters, the complexity and the range of geometry scales of 
industrial problems which can be handled routinely by LES are 
still very limited compared to commonly used RANS solvers [3]. 
This inhibits the ability of the higher fidelity resolution of flow 
mechanisms enabled high order LES to benefit industry designs. 
In order to reduce still further the cost of LES, this paper 
introduces the implementation of the STEFR method on a multi-
node many-core computing system consisting of CPUs and Intel 
PHI coprocessors. This system is built from low cost, commodity 
hardware and has low running costs. In particular, we built an 8 
node heterogeneous computing system, each node has 2 Intel 
Xeon CPUs, each has 8 physical cores each with 6 many-core 
Intel PHI cards each of which in turn has 57 physical cores. 
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The biggest challenge of this research, is the uniform time-

marching process at the heart of STEFR during which each cell 
has an adaptive local time step. This brings difficulties for load 
balancing the irregular data-communications. A three level 
parallel data communication model was constructed, with a 
multi-constraint, multi-level non-equilibrium mesh partition, to 
make maximum use of both the higher computing ability of Intel 
PHI coprocessor and the larger on-site memory of CPUs.  

 
This paper is structured as follows. First, the basic numerical 

formulation is reviewed, including high order space and time 
discretizations. Next, the construction of “offload” mode code is 
presented with three key novel techniques. A series of high order 
LES runs for a high lift low pressure turbine blade and a 
transonic turbine blade were performed to test and compare 
different choices: third order versus fourth order, wall resolved 
versus wall modelled, different mesh densities, zero turbulent 
density inlet versus synthetic fluctuated turbulent inlet. Statistics 
for computational cost and memory consumption for each 
simulation are listed; some analysis of the observed flow will be 
presented as well. The motivation in this paper is not only to 
provide some validation evidence for the functional performance 
of the present STEFR method but also to extract data on the 
computational efficiency on our novel hardware architecture. 
 
2 NUMERICAL METHOD 

 
2.1 FLUX RECONSTRUCTION DISCRETISATION 

 
The Flux Reconstruction (FR) approach was originally 

proposed by Huynh [3] for 1D conservation laws. Wang and Gao 
[4] extended the idea to simplex meshes for Euler equations and 
further for Navier-Stokes equations [5]. These approaches are 
summarized by the Correction Procedure via Reconstruction 
(CPR) method of Haga, Gao and Wang [6]. An infinite range of 
high-order energy stable flux reconstruction schemes were 
developed by Vincent, Castonguay and Jameson [7]. The FR 
approach is simple, flexible and very efficient thanks to its 
differential form without any numerical integration (quadrature), 
and it has proved it is capable of higher efficiency than other high 
order schemes (for example [8] & [9]).   

 
    In FR discretization, all elements are transformed from the 
physical domain (𝑥, 𝑦, 𝑧) to a local domain	(𝜉, 𝜂, 𝜁). Following 
the coordinates transformation, we define (with J the Jacobian): 
 

                  𝑈 = 𝐽 𝑈              (1) 
       

   𝐹𝜉 = 𝐽 (𝜉𝑥𝐹𝑥 + 𝜉𝑦𝐹𝑦 + 𝜉𝑧𝐹𝑧)  
   𝐹𝜂 = 𝐽 (𝜂𝑥𝐹𝑥 + 𝜂𝑦𝐹𝑦 + 𝜂𝑧𝐹𝑧)      (2)                                     
   𝐹𝜁 = 𝐽 (𝜁𝑥𝐹𝑥 + 𝜁𝑥𝐹𝑥 + 𝜁𝑥𝐹𝑥) 

  
The governing Navier-Stokes equations re-cast in local 

domain coordinates become: 
 

     01
02
+ 𝛻𝜉 ⋅ 	𝐹𝜉 = 01

02
+ 056

07
+ 058

09
+ 05:

0;
	= 	0	 	 (3)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

 

When discretized on an arbitrary, unstructured mesh with non-
overlapping elements, the 𝑗 − th solution points of the 𝑖 − th 
element lead to the uniform FR formulation for all different types 
of elements as: 
 
01A,B
02

+ 𝛻𝜉 ⋅ 	𝐹𝜉 𝑈C
C,D
														+

														 𝜶D,F,G(𝐹7|I − 		𝐹7|I	)C,F,G
JK
GLM

NK
FLM 		= 0                                

            (4) 
where 𝑁F is the number of faces for the element and 𝐾F equals 
number of flux points on the face. 𝐹7 , 𝐹9 and 𝐹;denote the 
common flux which takes the form of Riemann fluxes for the 
inviscid flux and central averaged values for viscous part. In 
particular, the difference between the common flux and the outer 
normal projection of the local flux(𝐹7|I − 𝐹7|I), is called the 
“correction flux”, the same as in the 1D FR formulation, and 
which is used to update the DOFs by exchanging information 
with  adjacent elements. The FR coefficients 𝜶  can be 
obtained through the “lift operation” [4] for the standard element 
types - the detail operations can be found in [8].  
  

 
2.2 SPACE TIME EXTENSION 

 
 Inspired by the Continuous Extension Runge-Kutta (CERK) 
approach for high order discontinuous method, introduced by 
Gassner et al [10], a “predictor-corrector” type space-time 
extension for high order FR (which we call STEFR) was devised, 
which uses the “flux divergence” part to construct the local 
predictor by using the continuous Runge-Kutta method [11], and 
then the “correction flux” part of the FR discretization is used as 
the corrector. In the original FR formulation, the flux divergence 
represents the major part of the compute workload and is 
completely local to the elements, whereas the linear combination 
of correction flux parts, which takes adjacent elements into 
account, is used for updating the degree of freedoms (DOFs). 
The STEFR method combines these two parts smoothly by using 
staggered operations which are simple, efficient, accurate for 
both space discretization and time-marching and permit local 
time-stepping.  
 
 We rewrite Equation (4) as the following “unified” form: 

       
  

01A,B
02

= 𝐑C,DR 𝑈C + 𝐑C,D,FS 𝑈C, 𝑈C,FIT
NK
FLM  

 
with	𝐑R and  𝐑S  given as: 

   𝐑𝒊,𝒋R = − M
[ A,B

𝛻7 ⋅ 	𝐹
7
𝑈𝑖

𝑖,𝑗
,									 

	𝐑C,D,FS = −	 M
[ A,B
	 𝛼𝑗,𝑠,𝑚(𝐹

𝜉|𝑛 − 𝐹
𝜉|𝑛	)𝑖,𝑠,𝑚

𝐾𝑠
𝑚=1

𝑁𝑠
𝑠=1 		                  

            (8) 
Integrating Equation (8) over time step interval 𝑡 ∈ [𝑡I, 𝑡IdM] 
one obtains: 
 
𝑈C,DIdM − 𝑈C,DI = 𝐑C,DR 𝑈C + 𝐑C,D,FS 𝑈C, 𝑈C,FIT

NK
FLM

2fgh

2f 	𝑑𝑡                                       
                   (9) 
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Inspired by the space-time extension of DG(STEDG) [10], we 
now construct a local space-time approximation 𝑣 =
𝑣(𝑥C, 𝑡)	 for 𝑡 ∈ [𝑡I, 𝑡IdM]  by solving the following time-
dependent ODE: 
       
 

klA,B
k2

= 𝐑C,DR 𝑡, 𝑣(𝑥C, 𝑡) ,								𝑣 𝑥C, 𝑡 = 0 = 𝑈CI(𝑥C)                                               
           (10) 
From Equations (7) and (8) it can be seen that 𝐑R is completely 
local, which indicates the time evolution of 𝑣 = 𝑣(𝑥C, 𝑡) is local 
also. The continuous Runge-Kutta method [11] is adopted to 
solve Equation (10) using the following procedure as: 

𝑣C,D 𝜏 = 𝑈C,DI + Δ𝑡	 𝐵p 𝜏
Nq

pLM

𝐻p	 

𝐵p 𝜏 = 𝑏p,G

tq

GLM

𝜏G 

𝐻p = 𝐑C,DR 𝑣Cp  
        

 𝑣C,Dp = 𝑈C,DI + Δ𝑡 𝑎p,I𝐻pvMp
ILM                                                                 

           (11) 
where 𝜏 ∈ [0,1] is the non-dimensional time, Δ𝑡 = 𝑡IdM − 𝑡I, 
𝑂2 is the order of time integration and 𝑁2 is the related number 
of stages and the coefficients 𝒂 and 𝒃	are given by Owren and 
Zennaro [9]. Integrating Equation (10) for 𝑡 ∈ [𝑡I, 𝑡IdM], one 
obtains 
        

  𝐑C,DR 𝑣Cp
𝒕𝒏g𝟏

𝒕𝒏 dt = vC,D 𝜏 = 1 − 𝑈C,DI                                                     
           (12) 
Taking the space-time polynomial 𝑣 = 𝑣(𝑥C, 𝑡)  as a local 
predictor, and the combination of correction flux 𝐑S  as 
corrector, substituting Equation (12) into Equation (9) results in 
the final step of the space time extension of the Flux 
Reconstruction (STEFR) scheme as: 
 
 𝑈C,DIdM = vC,D 𝜏G�� + Δ𝑡 𝐑C,D,FS 𝑣C 𝜏 , 𝑣C,FIT(𝜏IT) 𝑑𝜏

NK
FLM

M
�                                                   

          (13) 
where 𝜏IT  indicates the non-dimensional time for adjacent 
element with the same physical time.  
 
2.3 EFFICIENT PARALLEL IMPLEMENTATION 
  
 Central to the efficiency of the STEFR method is that all 
elements are allowed to use their maximum allowed local time-
step - which is itself adaptive during the simulations. This 
irregular time-stepping brings a lot of challenges for the time 
integration in maintaining physical time synchronicity - 
especially on parallel computing systems. This section focus on 
application of STEFR and its parallel implementation – targeted 
particularly at the emerging many core hardware platforms.  
 
 For the convenience of data exchange on element interfaces 
which is used for time integration of correction fluxes, the actual 
time-steps for all elements are set as powers of 2 with respect to 
the global smallest time-step. To illustrate this Figure 1 presents 
snapshots of a transient prediction during a global synchronous 
time step for a typical 3D simulation - which in this example has 
176 inner iterations in total. Compared to the more commonly 

used uniform step time marching methods, this approach needs 
to spend more effort in setting up getting executable queues and 
asynchronous parallel communications.  
 

   
𝑎 	𝑖C2�� = 1                b 	𝑖C2�� = 11           

 

  
      𝑐 	𝑖C2�� = 21              𝑐 	𝑖C2�� = 31     
                        

  
															 𝑒 	𝑖C2�� = 41   																								 𝑓 	𝑖C2�� = 51    
                         

  
         	 𝑔 	𝑖C2�� = 61																												 ℎ 𝑖C2�� = 176 

 
Figure 1. Snapshots time marching of one step: horizontal is 

element index and vertical is normalized prediction time 
 
 Therefore, the key to successful application of the STEFR 
method is minimizing the parallel communications. For the 
heterogeneous computing architecture adopted in this work (and 
discussed in the next Section) we use OpenMP for multi-
threaded parallel looping inside of each shared memory 
computing unit, whereas the communications between different 
computing units are undertaken by MPI. For most simulations 
on different computing systems, the fraction of wall-clock time 
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for effective functional evolutions is over 70% of the 
computational resource for most cases, including the correction 
flux calculations, predictions and corrections. The efficient 
implementation of STEFR using local time-stepping is much 
more complex than other explicit methods using uniform time-
stepping, such as explicit Runge-Kutta methods - however, the 
algorithm presented in this section has proved very efficient - 
even for large scale simulations, with more than 2 billion DOFs, 
and speed up ratios up to ~100	as compared to using global 
uniform time-stepping have been achieved [2]. 
 

 
2.4 OFFLOAD MODE IMPLEMENTATION 

 
The theme of this paper is “3E”: high spatial discretization 

Efficiency on general unstructured meshes, high Efficiency 
accurate time integration and high computing Efficiency on 
modern low cost HPC hardware. The previous Sections have 
discussed the first of these two efficiencies – this Section looks 
at a rather novel hardware architecture. 

 
Many-core computing systems are widely used and have 

progressed rapidly in recent years because of its high cost- 
effectiveness compared to pure, “traditional” multi-core CPU 
computing system in the HPC area. These computing systems 
are based on different many-core units including NVIDIA Tesla 
GPUs, AMD GPUs and Intel PHI co-processors. As is clear from 
the numerical review of the STEFR method earlier, its time 
marching method is not uniform and the data-communication is 
irregular. Also, for some computing loops of a single time 
marching step, the number of executive elements is maybe quite 
small especially in the final stage of inner iterative as shown in 
Figure 1(e)~ Figure 1(g). Therefore, several available many-core 
units have physical computing threads which are not suitable for 
STEFR method, such as NVIDIA Tesla GPUs and AMD GPUs. 
As reported in this paper, the Intel PHI co-processors have been 
chosen to build our heterogeneous computing system in order to 
trade fewer computing cores against each physical core having 
much stronger computing ability. 
 

To support this work we built a heterogeneous many-core 
computing system consisting of 8 nodes, each node has 2 Intel 
Xeon CPUs each with 8 physical cores and 6 many-core Intel 
PHI cards each with in turn 57 physical cores. All components 
are commodity items, easily and cheaply available. The system 
architecture is illustrated in Figure 2. This type of system holds 
out great promise going forward for a step change reduction in 
hardware costs – and hence, if the system can be driven 
efficiently, a step change reduction in LES solution time scales 
and cost. 

 
There are three different types of data-communication used 

in the computing system as shown in Figure 3: CPUs to CPUs, 
PHI co-processors and CPUs, internal data-communications 
between PHI co-processors/CPUs. Due to the irregular time 
marching process, the principle behind the design of the data-
communication model is to reduce the usage of distributed 
memory, and make use of more communication latency. As 
shown in Figure 3, asynchronous MPI is used for communication 
between CPUs though Infiniband (which has already 

demonstrated its high efficiency [1][2]).The data-transfer 
performance for small packages of data between host CPUs and 
PHI cards using Intel MPI is very poor even using OFED, 
therefore the “offload mode” [12] code was written which has 
mirror memory on host CPUs of all data-structures allocated on 
PHI co-processors and which speeds up the data transfer process. 
For each of the many-cores on host CPUs of each node, and on 
each PHI coprocessor, all executive loops are performed on 
shared-memory by using OpenMP’s multi-threading method. In 
order to reduce small package data-communication, the “offload 
mode” data transfer is synchronous between CPUs and PHI 
coprocessors, there is no communication between different PHI 
coprocessors and between PHI co-processors and CPUs on other 
nodes by using smart partitioning. 

 

 
 

Figure 2. Intel PHI based system architecture 
 

 
 

Figure 3. Three level data-communication model  
 

Another challenge for modern many-core computing units 
is the limited memory (8GB per PHI coprocessor) compared to 
CPUs (128GB per node). From the numerical scheme review in 
Section 1.2, in the STEFR method, the computational cost for 
single cell depends on its smallest size (and associated time limit) 
- however, the memory consumption still scales with the element 
number. So, in this work, a special multi-level, multi-constraint 
smart partitioning algorithm was written, to automatically 
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allocate more small size elements to PHI co-processors 
(typically near wall boundary layer elements) and put more 
elements on the CPUs to maintain load balancing and reduce 
data-communication size.                
 

 
3 VALIDATION ON TWO STANDARD TURBINE TEST 

CASES  
 

This Section will detail a series of LES runs performed on 
two well-known, standard turbine test cases and report the levels 
of software & hardware efficiency we were able to achieve in 
pursuit of our 3E goal. 
 
 
3.1 LOW PRESSURE TURBINE BLADE T106A 

 
This classic test case concerns the transitional and separated 

flow on the so-called T106A high-lift subsonic turbine cascade. 
A typical domain and mesh is shown in Figure 4 - all the high 
order hybrid unstructured meshes used in this paper were 
generated by BOXERMesh [2]. 
 

The Reynolds number is set equal to 1.1×10� based on the 
inlet velocity and the axial blade chord 𝐶 . The inlet Mach 
number is equal to 0.1. The spanwise length of the domain 𝐿� =
0.075𝐶, this is regarded as sufficient to capture the main flow 
structures. 
 

A series of LES runs were performed, with different solution 
orders of accuracy, both fully wall-resolved & wall-modelled, 
and with both turbulent inlet and zero turbulence intensity inlet 
boundary conditions; the Appendix summarizes all the runs. The 
motivation in this paper is partly to provide some validation 
evidence for the functional performance of the present STEFR 
method and also to extract data on the computational efficiency 
on our novel hardware architecture. Hence, only representative 
results will be shown here and discussed. In the Appendix “Tp” 
denotes the characteristic flow-past time scale – to gather reliable 
statistics the LES must cover several of these scales.   

 
Near-wall modelling is very important for this type of 

simulation and two approaches were used: “fully wall-resolved” 
with very fine near-wall mesh spacing and a simple van Driest 
damping factor for the sub-grid model; and “wall-modelled” 
following the approach of Moin et al [15] based on a local 
solution of wall-normal equations derived from the Navier-
Stokes equations (in other words a rather sophisticated “law of 
the wall” sensitive to local pressure gradient). 
 

Turning to the results, first, Figures 5a & b show time-
averaged and transient Mach number for Case T106A-1. This 
case is 3rd order accurate, and wall-resolved with near wall Y+ ~ 
3. The “speed up ratio” derived from the SREFR local time 
stepping algorithm is a factor of ~7 compared to the classical 
uniform constant time step approach. Figure 4c shows iso-
surfaces of Q-criterion for transient result. 
 

 
 

Figure 4. A typical mesh for the T106 test case. 
 

 
Figure 5a. Time average Mach number for Case T106A-1 

 

 
Figure 5b. Transient Mach number for Case T106A-1 

 

 
 
Figure 5c. ISO-Surface of Q-criterion(Q=50000) for 

transient result, colored by Mach number 
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The predicted turbulence spectrum within the blade wake is 
presented in Figure 6 showing that the present LES resolves the 
flow well into the inertial range and agrees well with the 
expected “-5/3 law”.   

 

 
 
Figure 6. Power spectral density of total velocity within the 

blade wake (x=0.172, y=0.05655), case T106A-4 
 
 

  
(a) x/C~0.83, average        (b) x/C~0.83, transient 

  
(c) x/C~0.88, average          (d) x/C~0.88, transient 

  
(e) x/C~0.92, average          (f) x/C~0.92, transient 
 
Figure 7. Comparisons of streamlines around the 

transitional/separation zone for both the time-averaged flow 
and a transient snapshot; Case T106A-4 

The flow features laminar separation around x/C ~ 0.88 and 
a relatively slow natural transition. Figure 7 shows comparisons 
of streamlines around the transitional/separation zone for both 
the time-averaged flow and a transient snapshot. These results 
were extracted from Case T106A-4. This case is 4th order 
accurate, and wall-resolved with near wall Y+ ~ 5. The “speed up 
ratio” derived from our SREFR local time stepping algorithm is 
a factor of ~8 compared to a classical uniform constant tine step 
approach. Comparisons of velocity vectors around the 
transitional/separation zone for both the time-averaged flow and 
a transient snapshot are shown in Figure 8 – again for case 
T106A-4. A separation bubble can be seen to have formed by 
about x/C~0.92 (a little later than in the experiments). What is 
interesting is that the spatial scale of the disturbance & reversed 
flow occupies a much larger wall-normal extent than the time-
averaged wall-normal bubble scale.  
 

Figure 9 compares measured and predicted blade suction 
side skin friction for Cases T106A-1 (3rd order accurate, wall-
resolved with near wall Y+ ~ 3) and T106A-4 (4th order accurate, 
and wall-resolved with near wall Y+ ~ 5). The comparisons, 
especially for the 4th order accurate simulation are very 
encouraging. 
 

  
(a) x/C~0.83, average        (b) x/C~0.83, transient 

  
(c) x/C~0.88, average          (d) x/C~0.88, transient 

 

  
(e) x/C~0.92, average          (f) x/C~0.92, transient 
 

Figure 8. Comparisons of velocity vector around the 
transitional/separation zone for both the time-averaged flow 

and a transient snapshot; case T106A-4 
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Figure 9. Measured and predicted blade suction side skin 

friction for Cases T106A-1 (3rd order accurate, wall-
resolved with near wall Y+ ~ 3) and T106A-4 (4th order 

accurate, and wall-resolved with near wall Y+ ~ 5) 
 
The next set of comparisons is shown in Figure 8 – measured 

and predicted wall-normal RMS velocity profiles using data 
from Case T106A-4. Again, the comparisons are very 
encouraging although the transition is evidently a little over 
predicted but is fully complete by x/C~0.92.  

 
As a test, one LES run, T106A-11, was performed with an 

inlet turbulence intensity of 3.8%, using an isotropic fluctuations 
inlet boundary condition [17] in which synthesized perturbations 
in the three velocity components at inlet are set up using a sum 
of discrete waves. The simulation was wall-resolved, 4th order 
accurate and had near-wall Y+~5. However, comparing mean 
velocity profiles around the transitional region with Cases 
T106A-4 and T106A-5, which had exactly the same mesh but 
only different inlet turbulence, there was nearly no observed 
effect of the inlet turbulence within the near-wall region (the 
laminar sublayer) and only very small differences at the start of 
transition point and the re-attached region. In the simulations the 
rather small turbulence intensity has no obvious effect on 
transition for this case.  
 

Finally, in terms of computer resource, most cases were run 
on just one of the eight nodes on our Intel PHI cluster, Cases 1 
and 4 needed wall-clock times of ~32 and ~45 hours per 
characteristic flow-past time scale, Tp. To demonstrate our 
progress towards our ultimate goal of overnight turn around 
Appendix A also shows Case T106A-6 run on four nodes (half 
the capacity of our low cost machine) needing only ~22 wall-
clock hours per time scale. 

 
 

 
(a) x/C=0.83 

 
 

 
(b) x/C=0.88 

 
(c) x/C=0.92 
 

Figure 10. RMS velocity profiles around the 
transitional/separation zone; measurements and predictions 

using data from Case T106A-4 (4th order accurate, and 
wall-resolved with near wall Y+ ~ 5) 
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3.2 TRANSONIC TURBINE BLADE 
 
The computational domain & unstructured mesh for the 

next test case, the VKI-LS59 blade, is presented in Figure 11. 
The exit Reynolds number is 8.5×10� with exit Mach number 
0.95 [18] meaning that shockwaves are present in the blade-
blade flow (in contrast to the T106 case). In the LES, the extent 
of the spanwise domain is set to about 4.2% of the chord length. 
This is judged to be enough to capture the 3D structure scales. 
All results are based on statistics and analysis taken from the 
simulation with flow physical time > 10Tp. Three simulations 
were performed in this work, details of the runs are listed in Table 
2 of Appendix A.  
 

 
 

Figure 11. 3D hybrid unstructured mesh for VKI-LS59 
blade 

 

 
 
 

Figure 12. Iso-surface of Q-criterion(Q=50000) for a 
snapshot of a transient result for Case VKI-LS59-2, colored 

by Mach number. 
 
 
 

 
 
Figure 13. Instantaneous Mach number for case VKI-LS59-

1 (wall-resolved LES) 
 

 
 

Figure 14. Schlieren picture for the VKI-LS59 [18] 
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To get an overview of the results, Figure 12 shows iso-
surfaces of Q-criterion for a snapshot of a transient result for 
Case VKI-LS59-2 (wall-resolved). Compared to the previous 
shock-free T106 flow, Figure 5c, there is a much stronger 
vortical motion downstream of the trailing edge. This is even 
clearer in Figure 13 which shows a snapshot of instantaneous 
Mach number. This more than just a simple von Karman vortex 
street from the blade trailing edge – the suction & pressure side 
boundary layers separate at the trailing edge and form shear 
layers which couple into an unsteady shock motion producing a 
very strong vortical motion in the wake. This will elevate the 
blade loss coefficient above expected steady flow levels. The 
experimental Schlieren [18] in Figure 14 tends to corroborates 
the LES. Figure. 15 presents the Power Spectral Density of the 
total velocity within the wake. As before the present LES 
resolves the flow well into the inertial sub-range.  
 

 
 
Figure 15. Power spectral density of total velocity within the 

wake (x=0.0855, y=0.0139), case VKI-LS59-2 
 

The next set of figures, Figure 16, shows time-averaged 
blade-to-blade Mach number for each of Cases VKI-LS59-1, 2 
& 3. Each case was run 3rd order accurate, Cases 1 & 2 were 
wall-resolved with near-wall Y+ values of ~1.5 and ~3 
respectively; Case 3 was wall-modelled with Y+~30. Figure 17 
shows comparison of blade surface isentropic Mach number 
between experiment and time-average LES results. The mesh 
densities in Case 2 (refined wall-resolved) and Case3 (wall-
modelled) are very similar differing only in the Y+ value for the 
first boundary layer mesh (~3 and ~30 respectively) – and both 
have very much smaller values of near-wall X+ and Z+ (both ~15) 
compared to the baseline wall-resolved Case 1 (X+ and Z+ both 
~106).  

 
It can be seen comparing Figures 16a, b & c that the much 

finer streamwise & spanwise mesh resolution predicts a time-
averaged position of the strong shock downstream of the trailing 
edge which is distinctively closer in location and angle compared 
to the experimental Schlieren in Figure 14. This observation is 
true also for the passage shock – best observed via the time-
averaged isentropic blade surface Mach numbers in Figure 17. 
The refined wall-resolved and wall-modelled runs, Cases 2 & 3, 
predict much better the pressure distribution through the passage 
shock around X/C~0.55 on the suction side than in the baseline 

Case 1. Clearly, strict control of X+ and Z+ as well as Y+ is needed 
for accurate predictions – obviously, adequate resolution of the 
boundary layer and the interaction with the shock is critical for 
accurate prediction of flows of this type. 
 

 
Figure 16a. Average Mach number for Case VKI-LS59-1 

 

Figure 16b. Average Mach number for Case VKI-LS59-2 
 

 
Figure 16c. Average Mach number for Case VKI-LS59-3 
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Figure 17. Comparison of isentropic blade surface Mach 
number between experiment and time-average LES results 

 
Nevertheless the second weak passage shock observed in the 

measurements (see Figure 12) is not predicted in any of the three 
simulations. There could be two possible reasons: the first might 
be an artifact of differences between the time-averaging method 
used in the numerical simulations and the unknown averaging 
implicit in the experiment data. The second might be inferred 
from the comparison of Cases VKI-LS59-2 and VKI-LS59-3 - 
the wall-modelled LES predicted the main passage shock 
slightly better, which might indicate inadequate performance of 
the piecewise integrated method [2] used in STEFR to predict 
moving shocks inside the boundary layer. This shock capturing 
method is derived from 1D analysis directly applied as if to 
isentropic cells but likely needing adjustment for high aspect 
ratio anisotropic cells.  
 

Finally, in terms of computer resource, all three cases were 
run on just one of the eight nodes on our Intel PHI cluster, Cases 
1, 2 and 3 needed wall-clock times of ~32, ~28 and ~6 hours per 
characteristic flow-past time scale. This clearly demonstrate our 
progress towards our ultimate goal of overnight turn around. 
Case VKI-LS-3 was 3rd order accurate with 116M DOF, wall-
modelled and had near-wall Y+~30 and we could run 4 
characteristic flow passing periods, Tp, per 24 hour wall clock 
time. 
 

 
4 PERFORMANCE OF STEFR & THE INTEL PHI 
SYSTEM ON A LARGER, COMPLEX GEOMETRY 
PROBLEM 

 
Finally, a very much larger test case, the NASA-Gulfstream 

airframe landing gear [20], is included to illustrate the 
performance of the present STEFR approach on our low cost 
Intel PHI based computing system. The geometry and details of 
the associated high order are shown on Figure 18. Statistics for 
the mesh and LES run configurations are listed on Table 3 of 
Appendix A 

 
This case had 862M DOFs and was run on all eight nodes of 

our low-cost cluster and achieved a wall-clock time of ~14 hours 

per characteristic flow past time based on the size of strut – 
within our 24 hour goal! 

 
 

 
 

 
 

Figure 18.The geometry of the generic NASA/Gulfstream 
landing gear with a detail views of the mesh showing the 

high order collocation points 
 

As a single snapshot visualization of the results, Figure 19 
shows an iso-surface (visualized by wireframe) of Q-criterion 
(Q=800000) of a transient result for NASA/Gulfstream Landing 
Gear Case. Noise producing wake structures are clear. Full post-
processing will be presented in a forthcoming paper. 
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Figure 19. Iso-surface (visualized by wireframe) of Q-

criterion (Q=800000) for a snapshot of a transient result for 
NASA/Gulfstream Landing Gear Case, colored by Mach 

number 
 

 
5 CONCLUSIONS 

 
The overall aim of our research is to enable overnight high 

fidelity LES for realistic industry problems on affordable 
computing resource. We have adopted a “3E” approach: high 
spatial discretization Efficiency on general unstructured meshes, 
high Efficiency accurate time integration and high computing 
Efficiency on modern low cost HPC hardware. The motivation 
in this paper is not only to provide some validation evidence for 
the functional performance of the present STEFR method but 
also to extract data on the computational efficiency on our novel 
hardware architecture.  

 
The STEFR method, is able to use coarser meshes but with 

higher order the discretization is able to resolve into the higher 
frequency spectrum for LES. The simulations benefit from a 
significant speed up by using time accurate local time-stepping, 
compared to conventional uniform time stepping. Validation 
results with two standard turbine cases are very encouraging. 

 
In terms of wall-clock time, our adoption of a novel 

hardware platform and associated modifications to our basic 
LES solver architecture clearly demonstrate our progress 
towards our ultimate goal of overnight turn-around. 
 

6 ACKNOWLEDGMENTS 
 
The authors are grateful to Cambridge Flow Solutions Ltd. 

For permission to publish this paper. 

7 REFERENCES 
 
[1] Yi Lu, Kai Liu, and W. N. Dawes. Large eddy simulations using 
high order flux reconstruction method on hybrid unstructured meshes. 

In AIAA Science and Technology Forum and Exposition 
(SciTech2014), AIAA2014-0424, 2014. 
[2] Yi Lu, Kai Liu, and W. N. Dawes.  Flow simulation system based 
on high order space-time extension of flux reconstruction method. In 
AIAA Science and Technology Forum and Exposition (SciTech2015), 
AIAA2015-0833, 2015. 
[3] G. Dufour, N. Gourdain, F. Duchaine, O. Vermorel, L. Y. M 
Gicquel, J.F. Boussuge and T. Poinsot. Numerical investigations in 
turbomachinery: the state of the art. Nodes for the von karman Institute 
for Fluid Dynamics September, 12-25 2009 
[3] Huynh, H. T. “A flux reconstruction approach to high-order schemes 
including discontinuous Galerkin methods”, 18th AIAA Computational 
Fluid Dynamics Conference, AIAA 2007-4079, 2007 
[4] Z. J. Wang and Haiyang Gao, “A unifying lifting col- location 
penalty formulation including the discontinuous Galerkin, spectral 
volume/difference methods for conservation laws on mixed grids,” 
Journal of Computational Physics, Vol. 228, No. 21, 2009, pp. 8161, 
8186.  
[5] Haiyang Gao and Z. J. Wang. “A high-order lifting collo- cation 
penalty formulation for the Navier-Stokes equations on 2d mixed grids”. 
In 19th AIAA Computational Fluid Dynamics, AIAA 2009-3784, 2009. 
[6] T. Haga, H. Gao and Z. J. Wang . “A high-order unifying 
discontinuous formulation for the navier-stokes equations on 3d mixed 
grids”. Mathematical Modelling of Natural Phenomena , Vol. 6, No. 21, 
2011, pp. 28, 56.  
[7] P.Vincent, P. Castonguay, and A.Jameson. “A new class of high-
order energy stable flux reconstruction schemes”. Journal of Scientific 
Computing, Vol.47, No. 1, 2010, pp. 50,72. 
[8] Y.Lu. “Local Reconstruction High Order Method and Experimental 
Research for Internal Flow of Turbomachinery”. PhD thesis, Tsinghua 
University, China.  
[9] C. Liang, C. Cox, and M. Plesniak. “A comparison of computational 
efficiencies of spectraldiffer- ence method and correction procedure via 
reconstruction”. Journal of Computational Physics, Vol.239, , 2013, pp. 
244, 261.  
[10] G. Gassner, M. Dumnser, F. Hindenlang, and C.D Munz. Explicit 
one-step time discretization for discontinuous galerkin and finite 
volume schemes based on local predictors. Journal of Computational 
Physics, Vol.230, 2011, pp. 4232, 4247. 
[11] B. Owren and M Zennaro. Derivative of efficient continuous 
explicit runge-kutta methods. Journal of Science Computing, Vol 239, 
2013, pp.138, 146. 
[12] Jim Jeffers and James Reinders. Intel Xeon Phi Coprocessor High-
Performance Programming, 2013 
[13] Engber M, Fottner L. The effect of incoming wakes on boundary 
layer transition of a highly loaded turbine cascade. AGARD REP 85th 
Symposium on Loss Mechanisms and Unsteady Flows in 
Turbomachines. AGARD, 1996 
[14] Hodson, H. “Turbulence Modelling for Unsteady Flows in Axil 
Turbine: TURMUNSFLAT,” Brite-Euram Project, Final TR CT96-
1043, von Karman Inst. April 2000, 85-99  
[15] G. I  Park. and P. Moin., An improved dynamic non-equilibrium 
wall-model for large eddy simulation, Phys. Fluids 26, 015108 (2014) 
[16] B. Raverdy, I. Mary, P. Sagaut, and N. Liamis, High-Resolution 
Large-Eddy Simulation of Flow Around Low-Pressure Turbine Blade, 
AIAA Journal, Vol. 41, No. 3, 2003 
[17] L. Davidson, Using Isotropic Synthetic Fluctuations as Inlet 
Boundary Conditions for Unsteady Simulations, Advances and 
Applications in Fluid Mechanics, Vol 1, No 1, pp. 1-35, 2007 
[18] N.C. Baines C.H.Sieverding R. Kiock, F. lehthaus. The transonic 
flow through a plane turbine cascade as measured in four european wind 
tunnels. Journal of Engineering for Gas Turbine and Power, 108:277–
284, 1986. 
[19] Yi Lu, W. N. Dawes. High Order Large Eddy Simulations for a 
transonic turbine blade using hybrid unstructured meshes. ASME Paper 
GT2015-42283, 2015 



12 
 

[20] M. R. Khorrami, D. P. Lockard, Jr. W. M. Humphreys, M. M. 
Choudhari and T. Van de Ven, Preliminary Analysis of Acoustic 
Measurements from the NASA-Gulfstream Airframe Noise Flight Test.  
AIAA Paper 2008-2814, 2008 



13 
 

APPENDIX A 
 

Table 1. Configurations for low pressure turbine blade T106A simulations, flow passing time 𝑇� is based on the size of 
chord length  

 
Case ID Inlet 

turbulence 
intensity 

Near wall 
resolution 

Order of 
accuracy 

Speed 
Up 

Ratio  

x+ y+ z+ Number 
of 

elements 

Number 
of DOFs 

Number of 
nodes on 
cluster 

Wall-clock 
time for 

1𝑇�(hours) 
T106A-

1 
0 Wall-

resolved 
3rd 7.32 27.2 3.07 27.2 460K 58.7M 1 32.68 

T106A-
6 

0 Wall-
resolved 

3rd 9.88 18.1 3.07 18.1 1.27M 166M 4 22.7 

T106A-
3 

0 Wall-
model 

3rd 11.53 27.2 16.1 27.2 409K 52.3M 1 13 

T106A-
4 

0 Wall-
resolved 

4th 8.27 45.4 5.15 45.4 110K 31M 1 45.5 

T106A-
11 

3.8% Wall-
resolved 

4th 
 

8.27 45.4 5.15 45.4 110K 31M 1 45.5 

 
 
 

Table 2. Configurations for transonic turbine blade VKI-LS59 simulations , flow passing time 𝑇� is based on the size of 
chord length  

 
Case ID Inlet 

turbulence 
intensity 

Near wall 
resolution 

Order of 
accuracy 

Speed 
Up 

Ratio 

x+ y+ z+ Number 
of 

elements 

Number 
of DOFs 

Number of 
nodes on 
cluster 

Wall-
clock time 

for 
1𝑇�(hours) 

VKI-
LS59-1 

0 Wall-
resolved 

3rd 8.07 106.5 1.5 106.5 440K 54.8M 1 32.44 

VKI-
LS59-2 

0 Refined 
wall-

resolved 

3rd 12.97 15.7 3 15.7 1.07M 137.3M 4 28 

VKI-
LS59-3 

0 Wall-
model 

3th 
 

5.33 15.7 30 15.7 902K 115.9M 1 6.37 

 
 

 
Table 3. Configurations for landing gear acoustic simulation, flow passing time 𝑇� is based on the size of struct length  

 
Number of 

cells 
Order of 
accuracy 

Number of 
DOFs 

Memory 
comsuming

(GB) 

Maximum(~) 
local time 

step(s), d𝑡G�� 

Minimum(~) 
local time 

step(s), d𝑡GCI 

Coarsest 
cell size 

(mm) 

Finest 
cell size 

(mm) 
11175544 THIRD 862,615,44

0 
301.1 3.34e − 05 6.12e − 10 114.3 0.0018 

 
 

Case ID Near wall 
resolution 

Order of 
accuracy 

Speed Up Ratio Number of nodes on cluster Wall-clock time for 1𝑇�(hours) 

Landing-
Gear-1 

Partly Wall-
resolved 

3rd 34.85 8 14.02 

 


